Lighthouse Drift Park
Construction of a lighthouse at Cape Hatteras was first authorized in 1794 when Congress recognized the danger posed to Atlantic shipping. However, construction did not begin until 1799. The first lighthouse was lit in October of 1803. Made of sandstone, it was 90 feet tall with a lamp powered by whale oil.
Lighthouse Drift Park
The 1803 lighthouse was unable to effectively warn ships of the dangerous Diamond Shoals because it was too short, the unpainted sandstone blended in with the background, and the signal was not strong enough to reach mariners. Additionally, the tower was poorly constructed and maintained. Frequent complaints were made regarding the lighthouse.
In 1853, following studies made by the Lighthouse Board, it was decided to add 60 feet to the height of the lighthouse, thereby, making the tower 150 feet tall. The newly extended tower was then painted red on top of white making the lighthouse more recognizable during the day. At the same time, the tower was retrofitted with a first order Fresnel lens, which used refraction as well as reflection to channel the light, resulting in a stronger beam.
By the 1860s, with the need for extensive repairs, Congress decided to appropriate funds for a new lighthouse. The Lighthouse Board prepared plans and specifications and construction on the new lighthouse began in October of 1868.
The new lighthouse was lit on December 16, 1870. The 1803 lighthouse was demolished in February of 1871. The Cape Hatteras Lighthouse received the famous black and white stripe daymark pattern in 1873. The Lighthouse Board assigned each lighthouse a distinctive paint pattern (daymark) and light sequence (nightmark) to allow mariners to recognize it from all others during the day and night as they sailed along the coast.
The Fresnel lens installed in the 1870 lighthouse was powered by kerosene and could be seen approximately 16 miles from the shore. The keeper had to manually rewind the clockwork apparatus each day. The Fresnel lens usually took 12 hours for a complete cycle. When the lamp was electrified in 1934, the manual mechanism was no longer needed. Damaged by vandals, the giant glass Fresnel lens had to be replaced by a modern aero beacon in 1950. Today, electricity provides the rotating power and a photocell turns the light on and off.
On January 23, 1950, the Coast Guard returned the beacon (250,000 candlepower) to the lighthouse since the beach had rebuilt over the years in front of the lighthouse. In 1972, the beacon was increased to 800,000 candlepower. From the 1960s to the 1980s, efforts were made to stabilize the beach in front of the lighthouse, which had started to erode again. In March of 1980, a winter storm swept away the remains of the 1803 lighthouse and caused significant dune erosion.
In 1999, the Cape Hatteras Light Station, which consists of seven historic structures, was successfully relocated 2,900 feet from the spot on which it had stood since 1870. Because of the threat of shoreline erosion, a natural process, the entire light station was safely moved to a new site where the historic buildings and cisterns were placed in spatial and elevational relationship to each other, exactly as they had been at the original site. While the National Park Service has met its obligation to both historic preservation and coastal protection, the much-heralded move of the historic station, especially the lighthouse, was hotly debated and closely watched.
The first order Fresnel lens, installed in 1854, initially burned whale oil as well. However, due to over-hunting, the sperm whale was becoming scarce and, by the 1870s, the US Lighthouse Service was in need of alternate fuels. There is no known record of exactly when the last whale oil was used in a US lighthouse but it is still mentioned in the 1871 Instructions to lighthouse keepers along with colza (wild cabbage or rapeseed) oil. Colza oil was one of the replacements that the US Lighthouse Service considered, but it was difficult to get because it was a low profit crop for US farmers. By 1880, whale oil had disappeared from the scene and, according to the 1881 Instructions to lighthouse keepers, the available fuels were lard oil and mineral oil (kerosene). There was a very short experiment at Cape Hatteras using porpoise oil. It was found to be totally unacceptable and was not adopted. From 1913 to 1934, the light was provided by an incandescent oil vapor (IOV) lamp using pressurized kerosene in a mantle. Official records show that kerosene still fueled the Cape Hatteras light as late 1927.
The original lens assembly, which rotated on a chariot at rpm, was turned by three 150 pound iron weights suspended on a cable and dropping down the center. The cable was wound around a drum in the clockwork mechanism beneath the lens, which worked much like a grandfather clock. Each morning, the weights were slowly cranked by hand to the top and then released at dusk when the lamp was lit, causing the lens to rotate. The gears in the mechanism provided the leverage to turn the 1- ton lamp/lens assembly. The speed of rotation could be adjusted by a fan governor in the clockwork. A gentle hand push was used to start the lens rotating but, once it was in motion, it maintained its rotation until the weight reached the bottom of the tower and had to be rewound. Regulations required that the weight be rewound to the top of the tower every morning. In many shorter lighthouses, cranking was needed every few hours.
The official range is 24 nautical miles (a nautical mile is 6,080 feet). At night, most vessels in clear weather can see the lighthouse from up to 20 nautical miles at sea. Seen exactly at sea level, the direct visible range is about 15.6 nautical miles. The USLHS standard was to allow an extra ten feet of height to account for the height of the bridge deck, giving 16.2 miles. At night, the glow or loom can be seen when the light is actually below the horizon; in some atmospheric conditions refraction causes the light to follow the earth's curvature, too. These phenomena are also factored in. The range of the lighthouse depends more on height and air clarity than on the power of its beacon.
The staff of the Cape Hatteras Lighthouse consisted of a Principal Keeper and two Assistant Keepers. The keepers did not live in the lighthouse but, when they were on duty, they would be found in the watch room at the top of the tower. Originally, the Lighthouse Board provided housing, staple foods, medicine, and a salary up to $800/yr. After the 1880s, keepers wore dark blue wool dress uniforms or fatigues.
They worked at the lighthouse performing maintenance, repair, and administrative duties. Each keeper was required to stand a four hour watch during the night. The time of these watches alternated daily from keeper to keeper. On one day, the Principal Keeper may take the 8 pm to midnight watch, the 1st Assistant Keeper would take the midnight to 4 am watch, and the 2nd Assistant Keeper would take the 4 to 8 am watch. The following night the Principal Keeper would take the midnight to 4 am watch, etc, etc. The keeper on watch at the end of the night would be responsible for all morning maintenance of the lamp and lens to prepare them for the upcoming night.
Q. Has it been in continuous service since 1803?Yes and no. There has been an established light tower of some kind in service since 1803. However, like most Southern lighthouses, the light was extinguished during the Civil War.
In 1936, the 1870 lighthouse was turned over to the National Park Service. Currently, under a Special Use Agreement, the US Coast Guard maintains the beacon and the NPS is responsible for the building itself. Twice a year, all four light bulbs are replaced, and the mechanism is inspected and lubricated.
Q. Wouldn't it have been easier to use a rope and pulley to haul up the oil ?No and this practice was never allowed in US lighthouses. The fuel for the lamp was extremely valuable and, when it was being moved, the keeper was required to keep it in his possession. At any rate, it would not have been less work. A once-over pulley gives no mechanical advantage; it still takes 6000 ft-lbs. of work to raise a 5-gallon can of oil 150 feet, just as it would climbing with the oil. But in climbing, the legs do the work, not the arms. A twice-over pulley takes half as much effort, but takes twice as long. The can would have tended to sway, and possibly rupture or spill when it hit a beam or bolt head, or fell (oil usage was very closely monitored; the keeper was held accountable for waste). And he'd still have to climb all the way up anyway - so no point in going up empty handed.
Q. How many storms has it survived?All of them! Seriously, no one knows; not all were recorded. About 150 hurricanes and countless nor'easters have affected the Outer Banks since 1548, since Europeans were here (who knows how many more before Europeans arrival). This would suggest about 40 hurricanes since the lighthouse was built. On April 17, 1879, lightning struck the tower; several months later, new shallow vertical cracks in the inner wall were ascribed to this by the keepers, but are now reliably attributed to thermal expansion of the structure. In the 1980s, studies of the cracks revealed movement with temperature variations. Later, the lighthouse also survived the Charleston earthquakes of August 31, 1886 (3 shocks up to 7.7 on the Richter Scale) and September 3, 1886, which was felt in Chicago.
Q. Why are there so many lighthouses in North Carolina ?Ideally, with lighthouses every 40 miles or so, one was nearly always visible to coasting ships. When one passed out of range, another would soon appear.
Generally, the shapes of the tower and dwelling, the advertised color and the geological background such as cliffs, rocks, hillsides, etc. provide adequate data to the mariner to assist with location determination. Towers can also be painted, often in solid colors that contrast with their natural backgrounds making them more visible. So, a lighthouse that is built of stone on a rocky island would most likely be painted white; a lighthouse near a town with numerous white buildings would probably be painted red. 041b061a72